
NCSC TECHNICAL REPORT-003
Library No. S-241,353

NATIONAL COMPUTER SECURITY CENTER

TURNING
MULTIPLE EVALUATED

PRODUCTS
INTO TRUSTED SYSTEMS

Jk.

PLEASE RETURN TO-

WASHINGTON!DC 20301 710H

July 1994

Approved for Public Release:
Distribution Unlimited

\\5^oi

Accession Number: 5408

Publication Date: Jul 01, 1994

Title: Turning Multiple Evaluated Products Into Trusted Systems

Personal Author: Fowler, I; Gamble, D.

Corporate Author Or Publisher: National Security Agency, 9800 Savage Rd., Ft. George G. Meade, MD
207 Report Number: NCSC Technical Report - 003 Report Number Assigned by Contract Monitor:
Library No. S-241,353

Descriptors, Keywords: Security Requirement Policy System Automated Information AIS Design Trusted
Integration Interface

Pages: 00023

Cataloged Date: Sep 14,1994

Document Type: HC

Number of Copies In Library: 000001

Record ID: 29388

NCSC TECHNICAL REPORT-003
Library No. S-241,353
July 1994

FOREWORD

This Technical Report "Turning Multiple Evaluated Products Into Trusted
Systems," is provided to stimulate discussion on how evaluated products can be
combined to produce trusted systems. We establish the premise that the
integrator/system designer has the responsibility to retain, in as much as possible, an
evaluated product's rating while it, the product, is performing within the context of
the integrated (larger) system. In this manner, we therefore propose that a modified
evaluated product has advantage over the use of a non-evaluated product for similar
functionality.

Recommendations for revision to this publication are encouraged and will be
reviewed periodically by the NCSC. Address all proposals for revision through
appropriate channels to:

National Computer Security Center
9800 Savage Road
Fort George G. Meade, MD 20755-6000

ATTN: Standards, Criteria, and Guidelines Division

Reviewed by:
GLENN GOMES
Chief, INFOSEC Standards, Criteria & Guidelines Division

Released bv: 7f*4~*? Stf~
ROBERT J.'SCALZI
Chief, INFOSEC Systems Engineering Office

ACKNOWLEDGEMENTS

This document was written by Joan Fowler and Dan Gamble of Grumman
Data Systems for the Procurement Guideline Project. The project leader was
MAJ (USA) Melvin L. De Vilbiss. Besides many NSA organizations, the document
was reviewed by Department of the Army (ASIS), DISA, MITRE, and
NAVELEXSECSEN.

TABLE OF CONTENTS

SECTION PAGE

FORWARD i

ACKNOWLEDGEMENTS ii

1. INTRODUCTION 1

2. SYSTEM DESIGN APPROACH 3
2.1 Classic High Level View of a System 3
2.2 Determine System Functions/Services 3
2.3 Define Functions/Services Interdependencies 4
2.4 Specify Dependency Lattice 4
2.5 Define Products and Platform 4

3. TRUSTED SYSTEM DESIGN APPROACH 7
3.1 Evaluated Products List (EPL) Product Determination 7
3.2 Product Conflict Resolution 8
3.3 Architecture Relies on External Dependencies 8
3.4 Trusted Computing Base (TCB) Definition 9

3.4.1 Product Analysis 9
3.4.2 System Interface Analysis 10
3.4.3 Application Audit Example 10
3.4.4 Example for An Integrated System 10

4. TRUSTED SYSTEM ASSURANCE 13
4.1 Product Assurance Documentation 13
4.2 System Assurance Documentation 14
4.3 System Documentation Standards and Analysis 14

5. CONCLUSION 17

BIBLIOGRAPHY 19

in

LIST OF FIGURES

PAGE

Figure 1. Dependency Lattice 4

Figure 2. An Example Application's Audit Function 11

Figure 3. Centralized Audit Administration 12

IV

1. INTRODUCTION

In the past few years, more Commercial Off-The-Shelf (COTS) products have
been populating the Evaluated Products List (EPL) than in previous years. In the
current economic environment, the tendency is to use evaluated products when
designing trusted systems to meet specific procurement requirements. The process
to design a trusted system composed of evaluated products is fundamentally the
same as designing any system using COTS products. The concept that makes the
process of designing trusted systems unique is that the combination of different
products composes a totally new security environment.

A trusted system, in the context of this paper, is a system composed of
multiple products. This system, at the interface to the Trusted Computing Base (TCB),
conforms to the Department of Defense (DoD) Trusted Computer System Evaluation
Criteria (TCSEC) (DoD 5200.28-STD) [1] and the forthcoming TCSEC-derived
protection profiles to be embodied in future U.S./international criteria.

This paper discusses how evaluated products can be combined to produce
trusted systems which meet the requirements specified in a procurement document,
thereby modifying, adapting, or eliminating portions of the composing product's
TCB. Frequently, the requirements specifiednecessitate changes to the product TCBs.
Because the product's rating may be invalidated when the product's TCB is changed
without understanding, justification, and review; system-level assurances are
necessary to compensate for the changes. It is the responsibility of the system
integrator/system designer to do the utmost to retain and not invalidate the product
rating. However, even with this possible invalidation, the use of an evaluated
product in a system provides the knowledge that the original product was
scrutinized, and those portions of the product that are not changed continue to
retain that scrutiny for the correctness of processing. Therefore, even if a product's
TCB must be modified, adapted, or portions eliminated, the use of an evaluated
product in a system development is advantageous over the use of a non-evaluated
product for the similar functionality. The combination of unequal security qualified
components to build a system is another dilemma in the integration process which
will not be discussed in this paper.

The need for the modification, adaptation, or elimination of a TCB in
evaluated products has greatly diminished in recent years. When the modification,
adaptation, or elimination is dictated due to system requirements, these changes can
take many forms. The easiest and most trusted form is to tune the product using the
product's configuration options, "hooks", or switches. (For example, in many
products it is possible to audit all or no activity for a user.) Another form is to use the
product as it was not necessarily intended to be used. If a product with Mandatory
Access Control (MAC) labels and controls is used in a system high environment, the
MAC processing actually occurs in the execution of the software, but it does not have
any security relevancy in the system. Another form of adapting an evaluated
product's TCB is to develop an extension to overcome the shortcomings of the
combined products used in a system. A final form of eliminating security
functionality is to actually modify the code of the product. This form is the least
desirable and should only be done when the system requirements dictate that
product code modification is the only solution. No matter which form the
modification takes, great care must be taken to determine the effect on the entire
system. The time required to integrate evaluated products into a trusted system and
ascertain the effects on each facet of the product must be assessed since that time, in

TURNING MULTIPLE EVALUATED PRODUCTS INTO TRUSTED SYSTEMS

some cases, may be greater than the time required to develop a trusted system, or a
portion of a trusted system, from the beginning.

2. SYSTEM DESIGN APPROACH

This section discusses an approach to designing a system to integrate COTS
products. This approach is a single method that can effectively be used for system
integration, although it is not the only approach. The approach, as it is described in
this section, is used for the integration of untrusted systems from COTS products. It is
also applicable to the integration of EPL products into trusted systems, with a few
modifications to the approach. This revised approach for trusted systems will be
discussed in following sections.

2.1 CLASSIC HIGH LEVEL VIEW OF A SYSTEM

The textbook high level view of a system is a processing box which receives
inputs, processes the inputs according to a set of requirements, and generates
outputs. This is the high level view of a system whether it is trusted or not. The list of
requirements which must be satisfied by the system processing is defined by the
operational needs and outputs required of the system. In the case of trusted systems,
the security policy of the system also determines some of the system requirements.
All of these requirements may be defined in a Request for Proposal, a System
Specification, a Statement of Work, or some other type of requirements document.
Finally, these requirements must be available to the system integrators/designers for
analysis and subsequent design of the system.

2.2 DETERMINE SYSTEM FUNCTIONS/SERVICES

When designing a system, the first step beyond this classic high level view of a
system is to determine what functions must be performed, as defined by the
requirements for the system.

A function is a "series of related activities, involving one or more entities,
performed for the direct, or indirect, purpose of fulfilling one or more missions or
objectives. It should be identifiable and definable, but may or may not be
measurable." A function may be composed of one or moresubfunctions. [2]
Subfunctions perform a portion of the overall task assigned to the function.

Each function selected for the system should be internally cohesive in that it
performs a single task and requires little interaction with other functions in the
system. [5] Another objective in determining the functions is to minimize coupling
between the functions to make them as independent as possible. [4] Of course, no
system can exist without some coupling to preserve the cohesiveness of the system as
a whole. By definition, a function that is not bypassable becomes primitive within an
architecture. That function's implemented security policy will be invoked between
each domain that it invokes. Unintentional or intentional emergent behavior can be
created when integrating functions which detract from the cohesiveness of the
system functionality.

Some examples of high level functions that may be determined for a system
are data base management, man-machine interface (MMI), communications, or mail.
In trusted systems, MAC, Discretionary Access Control (DAC), Audit, and
Identification and Authentication (l&A) are all possible functions to be defined. The
definition of any or all of these functions is determined by the set of requirements
for the system. There are security requirements that are not normally characterized
as functions. Examples of these are domain isolation, integrity, and trusted path.

TURNING MULTIPLE EVALUATED PRODUCTS INTO TRUSTED SYSTEMS

However, if a system or product has a trusted path available to the user for example,
some mechanism (e.g., "function") must provide this capability.

2.3 DEFINE FUNCTIONS/SERVICES INTERDEPENDENCES

The next step toward designing a system is to determine the coupling that has
to exist between functions. This coupling forms interdependencies between the
functions or services. An example of this interdependency at a high level is a mail
function that may be dependent on the MMI to "deliver" the mail to a user's
terminal. Of the security functions, applications may be dependent on theTCB to
perform security functions. Additionally, the l&A function may need the MMI to
allow the user to input his/her logon identification sequences. Finally, the MAC and
DAC functions depends on an l&A function to authenticate and provide the correct
information for the user.

2.4 SPECIFY DEPENDENCY LATTICE

Once all of the functions have been defined and the interdependencies have
been determined, a dependency lattice can be described. Figure 1 illustrates a
dependency lattice for generic functions. This lattice defines those functions that are
dependent on other functions, as well as those functions that are independent.

2.5 DEFINE PRODUCTS AND PLATFORM

Finally, the independent functions are used to determine, from the products
available, those products that will best meet the requirements of the system. This is
done by comparing the functions required by the system with the functionality
provided by all the available products. When a close match is determined, a product
can be selected. Sometimes dependent functions have to be rearranged to better fit

Independent
Level

Dependent
Levels

Function A

i r

Function B Function C w

i r

Function D

Figure 1. Dependency Lattice

SYSTEM DESIGN APPROACH

the products that are available. There is never a perfect match between the
requirements for a system defined into functions and the specifics of a single
product or a group of products. The products will either not collectively contain a
needed dependent function, will contain functions that are not requirements for the
system, or will contain redundant functions among the group of products.

Once the best correlation between all the functions or services and available
software products is made, then the physical requirements are taken into account.
These physical requirements include performance, reliability, interfaces, and other
requirements [5] which further constrain the choice of available software products,
and thus determine the platform (e.g., hardware) for the system. Again, there is
never a perfect map between the software products selected, the system's physical
requirements, and the platforms available even when the platform is selectee! at the
end of the process. However, selecting the platform prior to determining the
software products that will satisfy the system requirements increases the differences
between the map of the platform and the products and physical requirements.

TURNING MULTIPLE EVALUATED PRODUCTS INTO TRUSTED SYSTEMS

THIS PAGE INTENTIONALLY LEFT BLANK

3. TRUSTED SYSTEM DESIGN APPROACH

The approach to the design of trusted systems using evaluated products must
be taken a step further than the approach described above. When designing trusted
systems, the security functionality of each individual product may not satisfy all of
the security requirements of a system. For instance, one product may have a
compliant l&A (e.g., with an automatic password generator), while another product
may have a compliant audit mechanism (e.g., with all of the reporting capabilities
for the audit log). However, the security functionality of all of the products together
may present a redundant surplus of security functionality. Redundant security
functionality is especially important to deal with when there are conflicts between
the security functions of the various products to be used for the system. A possible
example of a conflict is the case of object reuse functions in a system in which one
product clears objects before releasing the object to the user, and the other product
in the system clears the object after the user has released the object. In this case, the
potential exists for the user to receive, under the right circumstances, an object that
has not been cleared by either product; or the user may suffer performance
degradation when the object is cleared by both. In this case, a unified object reuse
policy for the system would need to be established.

3.1 EVALUATED PRODUCTS LIST (EPL) PRODUCT DETERMINATION

An evaluated product is selected much as any other product would be
selected, based on a set of functions that the product must satisfy. As stated above,
when a function and its dependent functions are compared to a product, there are
almost always requirements that are not satisfied by the product. Additionally, there
is functionality in the product that is not included in the list of requirements for the
system as a whole. This surplus may lead to conflict between products when each
attempts to satisfy the same single requirement in a system with a cohesive policy.

An example of this conflict is a single processor system that has requirements
translating into a need for an evaluated operating system and a trusted application,
(e.g., mail). The operating system will probably contain l&A, DAC, and audit
capabilities. The application may also have l&A, DAC, and audit capability. In all
other aspects, the two products are a perfect match for the system requirements.
However, in this case, there is a redundancy of security functionality. The application
is not an operating system and the operating system can not perform the non-
security capabilities required of the application. Therefore, neither of the products
individually satisfies both the security and non-security requirements of the system.
If two products with a reference monitor are included in a system, one of the
reference monitors is going to be bypassed at some time during operation of the
system.

The redundant features issue can be decomposed into security policies and
mechanisms to implement the policy. If both the policy and the mechanism are
identical, as in the case of a homogeneous network environment with a single policy
in which the workstation and server both use the same evaluated operating system,
then there might be user resistance (e.g., to a double logon). If the same intended
policy is implemented with different mechanisms, as in the case of a heterogeneous
network environment in which two different operating systems are used with
different labeling schemes, then there exists a conflict between the two
mechanisms. The label conflict may be resolved by a conversion function developed
as an extension to the TCBs of either or both of the products. Additionally, if the
policy is different but the same mechanism is used, a policy conflict exists even in a

TURNING MULTIPLE EVALUATED PRODUCTS INTO TRUSTED SYSTEMS

homogeneous workstation and server environment with the same operating system
containing the same DAC mechanism. The workstation may be using different
"Group" definitions and Access Control Lists (ACLs) than the server. This conflict
would violate one of the policies without the knowledge of the violated processor.
Finally, if both the policy and the mechanism are different, a heterogeneous
network environment in which the label policy and the labeling mechanism are both
different, then conflicts that might not be able to be resolved may exist. In this case,
something fundamental in the policy or the mechanism would have to be changed.
The simple conversion of the label format would not suffice to integrate these two
systems.

3.2 PRODUCT CONFLICT RESOLUTION

It is not efficient to have differing DAC or audit schemes when designing a
cohesive system. This is not to state that redundancy can not, in some circumstances,
strengthen the security of a system, provided that it is user friendly and not counter
to human intuition. However, there is always a concern for consistency of the global
security policy of the system where redundancy is involved. It is not advantageous to
incorporate two l&A mechanisms into a single secure operational system, without at
least some dominance of one over the other. (Most systems today require a limiting
of a single logon for a user session.) Each of the redundant security functions may
need to be modified or disabled in one of the products (through extensions to the
product TCB, switches, configuration options, if possible; or TCB code modifications,
if necessary) in order that the system may have a single l&A, DAC, or audit. This is
done by modifying, adapting, or eliminating one or the other product to disable or
limit the function. Then the other product, in which the function is not disabled or
limited, must be changed to interface with the product in which the function has
been disabled or limited.

The process of modifying or adapting an evaluated product by limiting
functionality has ramifications to the evaluation of the modified product. It may
invalidate the EPL rating of the product, if not done with review, justification and
understanding. The integration of multiple evaluated products may stay within the
bounds of the assumed parameters as stated in the individual product's evaluation
report, or the integration effort may violate those bounds. If necessary, it is the
responsibility of the system integrators/designers to compensate for any invalidation
of the product rating using system-level, as opposed to product-level, assurance. This
will be discussed later in this paper.

The product vendor is always the best choice to make modifications to
products. The vendor may make a business decision on the marketability of changes
required for a system acquisition. If the modification can be productized, the vendor
will insert the change into the standard productand perhaps take the modification
through the Rating Maintenance Program (RAMP) frequently with no charge to the
acquisition. This is the most advantageous course of action. The spectrum from the
above (vendor made changes) down to the integrator performing the changes
without any vendor support are possible scenarios. The average contract design,
integration, and/or development strategy will lie somewhere along this spectrum.

3.3 ARCHITECTURE RELIES ON EXTERNAL DEPENDENCIES

Frequently, there are external dependencies which affect the architecture of a
trusted system which would not affect the architecture of an untrusted system. An
example of this is a system that receives labeled input. This system receives the

8

TRUSTED SYSTEM DESIGN APPROACH

labeled input directly into the processing stream for all data. Since the input is
labeled at the source of the data outside of the system boundary, the integrity of the
label must be assumed to be trusted as far as the system is concerned. (Mechanisms
are available to ensure this to be true.) Therefore, the MAC performed using this
label is solidly based.

However, if the data received by the same system architecture is not labeled
and is at multiple classification levels, then the system does not have a basis for MAC.
The architecture could be changed to include some sort of labeling entity prior to
the unlabeled data entering the mainstream of the system. Depending on the
requirements of the system, this could be a human on a terminal reviewing and
labeling all data; it could be a front-end component labeling all data from a single
level device; or, it could be an operating system labeling all data from a single level
port. For this example, it does not matter what the architectural change would be,
just that the overall system architecture must accommodate the differences between
labeled and unlabeled input.

3.4 TRUSTED COMPUTING BASE (TCB) DEFINITION

Once the products are selected and the architecture is defined, the TCB for the
system must be established. Under the premise of this report, the system would be
designed using COTS components (both trusted and non-trusted products). A single
system TCB would, in this case, be defined using the product TCBs as the basis and
satisfying the reference monitor assumptions and the system security policy. This is
done by examining the various TCBs of the products, identifying the mechanisms
and interfaces that will remain for the resulting system, and analyzing what
additional mechanisms and interfaces may be necessary for the system.

3.4.1 Product Analysis

As stated previously, there is never a perfect match between requirements,
functions, and products. If functionality is lacking in all of the products selected,
then the integration process must include the development of that functionality or
the inclusion of a non-trusted component to handle the functionality. Occasionally
during a tradeoff analysis, a non-automated solution (e.g., a locked room) is
determined to be the preferable manner to address any missing functionality.

However, the more likely occurrence, when a collection of evaluated products
are combined, is redundant security functionality. An analysis must be made to
determine which security features will be used in each product. This analysis must be
carried a step further for evaluated products. An additional analysis must be made to
determine how the security characteristics of each individual component may affect
the composite characteristics of the system, and what the resulting effect will be to
the overall product and system when a product's security feature is not used, either
disabled or limited. It is important that this analysis be performed in the early stages
of a program to inform the program management of the correct integration
options, even if the demonstration/proof of the satisfaction of the requirements of
the TCSEC by the modified system is required for the integrated system. To rely on
the later assurance proof for this analysis will inform the program, after delivery,
that the system has already been integrated/developed incorrectly. At that point,
the information is not beneficial to the program.

TURNING MULTIPLE EVALUATED PRODUCTS INTO TRUSTED SYSTEMS

3.4.2 System Interface Analysis

Beyond the analysis of the product and the selection of which product
features to use and not use, a system analysis must be performed to identify the
interfaces that will be needed within the system TCB. This analysis includes the
system interfaces that will occur between the products without modification, or as
the manufacturer delivered it. (Again, the use of the code of products as they are
delivered by the manufacturer is the preferable manner in which to use a product.)
Additionally, the analysis must take into account the interfaces which are newly
created when the products are modified to eliminate certain features, or add a
system capability.

A desirable result of any trusted system integration is to minimize the overall
system TCB while minimizing the impact on the product TCBs composing the system
TCB. Using evaluated products, each will contain a TCB. When all of the product TCBs
(as well as the new TCB functions developed for the integration effort) are taken
into account for the system, the resulting overall TCB will be a certain value. To
eliminate a portion of a product's TCB is to diminish the size of the overall system
TCB by the complexity and value of the portion of the product TCB that is
eliminated. This serves to minimize the overall system TCB by the value of the
excluded portions of all the products' TCBs. However, this minimization action must
be accomplished with care. Eliminating parts of a component TCB may increase your
risk because of internal dependencies within the product. Additionally, it may
increase program cost because the impact of removing the portion of the product
TCB must be determined. Tradeoffs and compromises must be made.

3.4.3 Application Audit Example

Figure 2 is a pictorial description of the audit function of a trusted application.
The application could be anything trusted, a trusted mail application, a trusted
Database Management System, etc. This particular audit function has a security
administration subfunction which sets the criteria on which auditing will occur. The
criteria are placed in a database. The next subfunction is the audit interface in the
TCB which detects a criteria match. When a match is detected, the event recorder
subfunction records the event using the user ID, success/fail criteria, event data, and
time which are held for the application in a database, table, or global common,
depending on the implementation. The event recorder writes the audit record to the
application's audit log. There is also a real time subfunction which checks thresholds
and responds to the matching of these thresholds. An example of this functionality is
a limit of three attempts to logon using a single user ID. On the fourth attempt, the
real time subfunction may lock a user out of the system. There are also several
administrative subfunctions dealing with the application's audit log. The data
reduction subfunction handles the queries and responses to the audit log. The
administrative subfunction allows an administrator to archive and purge the audit
log.

3.4.4 Example for An Integrated System

To carry on with this example, the following is a single approach to use this
product in an integrated system. (This approach is not the only approach that can be
used, neither is it meant to be a procedural description of composing systems.) The
product has been selected to perform whatever application it does. In this example,
the product will be used in a distributed architecture which has a requirement for
centralized administration of the auditing capability and a centralized system audit

10

TRUSTED SYSTEM DESIGN APPROACH

log. This is not to imply that an application's audit log must be deactivated if there is
a system audit log.

Success/
Fail

Event
Data

Database
Control User

ID

Security
Administration
(Sets Criteria)

Audit Interface
inTCB

(Detect Criteria Match)

Time

Event
Recorder

Data
Reduction

(Query/Resp)

Real
Time

(Thresholds)

Admin
(Archive,

Purge)

Figure 2. An Example Application's Audit Function

Figure 3 illustrates the system with centralized audit administration and
storage. The application described in the previous subsection is in the figure as the
lightly shaded large box. In order to achieve centralized administration, an audit
management subfunction must be developed that sets the criteria for the entire
system. A portion of this subfunction must be written to interface with the security
administration subfunction of the application. To have the application's event
recorder subfunction write the audit records to the system audit log instead of the
application's audit log, a common interface must be written between the event
recorder subfunction and the system audit log. Assuming that there is more than
one application in the system which produces audit records, the common interface
subfunction would translate all of the application audit record formats and data
packing schemes to a single system audit record format. Additionally, the interface
between the application event recorder subfunction and the application's audit log
must be severed.

As can be seen from Figure 3, there are two new subfunctions in this system
view, the audit management and the common interface. These subfunctions are
denoted in the boxes without shading. There are also three new interfaces. In the
figure, these interfaces are denoted by the heavy arrow lines. There is a new

11

TURNING MULTIPLE EVALUATED PRODUCTS INTO TRUSTED SYSTEMS

interface between the new system audit management subfunction and the
application security administration subfunction. There is another new interface
between the application event recorder and the new common interface
subfunction. And, finally, there is a new interface between the new common
interface subfunction and the system audit log.

Since all of the audit records are now being processed into the system audit
log, the application's audit log is no longer used. Therefore, the interface between
the application event recorder subfunction and the application's audit log is severed.
This is designated in the figure with a heavy "X". Finally, since the application's audit
log is no longer used, the three subfunctions that support the application's audit log
are also no longer needed. These three subfunctions (data reduction, real time, and
administrative) and the application's audit log are all designated in the heavily
shaded boxes.

Success/
Fail

Event
Data

Database
Control

Security
Administration
(Sets Criteria)

Audit Interface
inTCB

(Detect Criteria Match)

Time

Event
Recorder

i^Ty'i>'A^Vtlr"ii>rtf"^',SS^iii1ä'i'ai

Admin

Audit
Management

Application

Data
Reduction

(Query/Respl

Real
Time

(Thresholds)

System
Audit
Log

Common
Interface

Admin
(Archive,

Purge)

Figure 3. Centralized Audit Administration

12

4. TRUSTED SYSTEM ASSURANCE

The use of evaluated products is an extremely good starting point for the
certification and accreditation efforts of systems. However, the combination of
evaluated products, with the resulting changes to the products as described above,
may invalidate the rating of the product when the changes are performed without
the proper review and understanding. The assurances developed at the system level
during the integration process must compensate for any invalidation of the product
rating.

The TCSEC is the standard used to develop the assurance of products. The
TCSEC defines the assurance documentation required for a TCB. The design
documentation requirements are a subset of the overall documentation described in
the TCSEC. The TCSEC requires that "If the TCB is composed of distinct modules, the
interfaces between these modules shall be described." [1] This is true for all classes
defined in the TCSEC above the Minimal Protection Division (D). Additionally, the
TCSEC requires that "The specific TCB protection mechanisms shall be identified..."
[1] This is a requirement for all classes in the Mandatory Protection Division (B) and
Verified Protection Division (A).

Of course, there are additional assurance documentation requirements that
include: a security policy model, a Philosophy of Protection, a Descriptive Top Level
Specification, a Formal Top Level Specification, a covert channel analysis, a TCB
verification report, a Configuration Management Plan, administrator and user
manuals, and testing documentation. The modification, adaptation, or elimination
of product TCB functionality (mechanisms and interfaces) has a ripple effect through
all of the assurance documentation for the system.

Security testing, as well as other activities such as architecture, recovery, and
verification, are also required as assurance mechanisms. Security testing of the
combined evaluated products demonstrates that the modified mechanisms and
interfaces perform as intended and that the overall level of protection has not been
diminished. Finally, this testing will serve to validate the completeness of the system
level documentation. Security testing of the system, as with all assurance activities, is
performed to support a certification and accreditation, and not an evaluation, of the
system. All the engineering efforts to assure a system are documented (e.g., security
testing is reflected in the test plan, procedures, and report required by the TCSEC for
testing). Therefore, the remainder of this paper uses the term "documentation" to
refer to all of the assurance documents required by the TCSEC for evaluation.
Included in the use of the term "documentation" are all the activities (e.g., testing,
design engineering, covert channel analysis) that are performed in order to produce
these assurance documents.

4.1 PRODUCT ASSURANCE DOCUMENTATION

In order for a product to be evaluated, TCSEC documentation requirements
have to be satisfied. But what happens to this product assurance documentation
when the product is modified for use in a system? Most of the product
documentation should still be valid. If the product changes so much that a total
rewrite of the documentation is needed, then perhaps the product is not really a
match for the requirements of the system, and another product should be selected.

13

TURNING MULTIPLE EVALUATED PRODUCTS INTO TRUSTED SYSTEMS

4.2 SYSTEM ASSURANCE DOCUMENTATION

Assuming that most of the product is going to be utilized as evaluated in the
system, and that most of the product's documentation is therefore valid, the few
modifications, adaptations, and eliminations made to the product must be
documented. When composing evaluated products into trusted systems, new
subfunctions may be needed to couple products, new interfaces are included to
these new subfunctions, some of the mechanism of the original product may be
disabled, and original interfaces may be excluded. These four types of modifications
break down into two categories: TCB interfaces and mechanisms. The modifications
are the two sides of each of these categories: eliminated and new TCB interfaces;
and eliminated and new mechanisms.

The existing evaluation version of the product documentation should describe
all interfaces and protection mechanisms to include both the original interfaces and
mechanisms that have been eliminated during the integration of the system. The
system level documentation should describe the effect that the elimination of the
mechanisms and interfaces of the evaluated product has on the system TCB as a
whole.

The previous paragraph covers the elimination of original interfaces and
mechanisms of the evaluated product used in the system. The addition of new
mechanisms and the resulting additional interfaces to the combined product TCBs
for the system must also be documented in the system-level assurance
documentation. These mechanisms and interfaces are not described in any of the
product-level documentation since they are probably either not available in any of
the individual products, or were not required to perform in the product as they are
in the system.

There are options to the system integrator/developer when the modification
of product documentation is done. The vendor may develop the code modifications
and document those modifications. Or, the integrator may buy the code and
documentation, and then modify each as required. Between these two ends of the
spectrum are a range of options to both the program and the integrator.

4.3 SYSTEM DOCUMENTATION STANDARDS AND ANALYSIS

The Data Item Descriptions (DIDs) which have been developed for the series
"A Guide to Procurement of Trusted Systems, Volume 3," were written to be applied
to products [3]. However, they require the definition of the TCB interfaces and the
identification of the TCB protection mechanisms. In the procurement of trusted
systems, these DIDs are applicable for system-level assurance documentation. The
orientation (e.g., system-level, product-level) of the DID must be expanded outside
the framework of the DID. The Statement of Work (SOW) or the Contract Data
Requirements List (CDRL) calling out the DID should include statements for the
system-level orientation of the resulting assurance documentation. These SOW or
CDRL statements should require the examination of the interfaces and mechanisms
between products and the analysis of the elimination of interfaces and mechanisms.

A real challenge in the replacement of invalidated product-level
documentation is the analysis of the validity of the system-level assurance
documentation. The certifier validates the assurance documentation for the system
and certifies that the system meets certain requirements. However, it is ultimately
left to the accreditor of the system to determine the validity of the assurance

14

TRUSTED SYSTEM ASSURANCE

documentation for the system and give the permission for the system to operate.
There is no other body willing to assess the validity of system-level assurance
documentation at this time

15

TURNING MULTIPLE EVALUATED PRODUCTS INTO TRUSTED SYSTEMS

THIS PAGE INTENTIONALLY LEFT BLANK

16

5. CONCLUSION

In conclusion, this paper has presented a single approach to the composition
of evaluated products into trusted systems. These evaluated products can be
combined into trusted systems with assurance. The system-level assurances must
compensate for any invalidation of the individual products' ratings. The system-
level assurance must document the same types of information that the product-level
assurance has documented, i.e. interfaces and mechanisms. The only difference is
that excluded and eliminated product mechanisms and interfaces must also be
assessed in the system-level documentation. When procuring these systems, the
SOW or CDRL should include direction to the integrator to examine the new
interfaces and mechanisms between the products and assess the elimination of
interfaces and mechanisms.

17

TURNING MULTIPLE EVALUATED PRODUCTS INTO TRUSTED SYSTEMS

THIS PAGE INTENTIONALLY LEFT BLANK

18

BIBLIOGRAPHY

[1] Department of Defense, "Trusted Computer System Evaluation Criteria"
(TCSEC), DoD 5200.28-STD, December 1985.

[2] Modell, Martin E., A Professional's Guide to Systems Analysis, McGraw-Hill
Software Engineering Series, McGraw-Hill Book Company, New York, 1988.

[3] NCSC-TG-024, Version 1
Volume 1 I A, "A Guide to Procurement of Trusted Systems: An Introduction to
Procurement Initiators on Computer Security Requirements," December 1992

Volume 2/4, "A Guide to Procurement of Trusted Systems: Language for RFP
Specifications and Statements of Work - An Aid to Procurement Initiators,"
June 30,1993

Volume 3/4, "A Guide to Procurement of Trusted Systems: Computer Security
Contract Data Requirements List and Data Item Descriptions Tutorial,"
February 28,1994

Volume 4/4, "A Guide to Procurement of Trusted Systems: How to Evaluate a
Bidder's Proposal Document - An Aid to Procurement Initiators and
Contractors," (Draft)

[4] Page-Jones, Meilir, The Practical Guide to Structured Systems Design, Yourdon
Press, Englewood Cliffs, New Jersey, 1988.

[5] Pressman, Roger S., Software Engineering, A Practitioner's Approach,
McGraw-Hill Series in Software Engineering and Technology, McGraw-Hill Book
Company, New York, 1987.

19

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

this
rson Davis

CO ection OT iniormat on, mciuuiny iuyyesuuns iwr icuuuny un> wuiuci, ^ ..«* y.~.. . ..--—,--. ,„",'".— n ■ * ymn, nioo\ \iu~ru„„.«« nr incn3
Highways. Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

July 1994
3. REPORTTYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Turning Multiple Evaluated Products Into Trusted Systems

6. AUTHOR(S)

Joan Fowler and Dan Gamble, Grumman Data Systems

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Security Agency
Attention: INFOSEC Standards, Criteria, and Guidelines Division
9800 Savage Road
Fort George G. Meade, MD 20755-6000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

NCSC TECHNICAL REPORT-003

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Library No, S-241,353

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release: Distribution Unlimited
12b. DISTRIBUTION CODE

This Technical Report discusses how evaluated products can be combined to produce trusted
systems which meet the requirements specified in a procurement document, thereby
modifying, adapting, or eliminating portions of the composing product's TCB. Frequently,
the requirements specified necessitate changes to the product TCBs. Because the product s
rating may be invalidated when the product's TCB is changed without understanding,
justification, and review; system-level assurances are necessary to compensate for the
changes. It is the responsibility of the system integrator/system designer to do the utmost to
retain and not invalidate the product rating. However, even with this possible invalidation,
the use of an evaluated product in a system provides the knowledge that the original product
was scrutinized, and those portions of the product that are not changed continue to retain
that scrutiny for the correctness of processing. Therefore, even if a product's TCB must be
modified, adapted, or portions eliminated, the use of an evaluated product in a system
development is advantageous over the use of a non-evaluated product for the similar
functionality. The combination of unequal security qualified components to build a system is
another dilemma in the integration process which will not be discussed in this report.

14. SUBJECTTERMS

Security Requirements, Security Policy, Automated Information Systems, System
Design, Trusted System Design, Integration, Trusted System Interface

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

\ISN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
23

16. PRICE CODE

20. LIMITATION OF ABSTRACT

* Ü.S. GOVERNMENT PRINTING OFFICE: 1994 - 522-914 - 1302/81289

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

